Markovian iterative method for degree distributions of growing networks.
نویسندگان
چکیده
Currently, simulation is usually used to estimate network degree distribution P(k) and to examine if a network model predicts a scale-free network when an analytical formula does not exist. An alternative Markovian chain-based numerical method was proposed by Shi [Phys. Rev. E 71, 036140 (2005)] to compute time-dependent degree distribution P(k,t) . Although the numerical results demonstrate a quick convergence of P(k,t) to P(k) for the Barabási-Albert model, the crucial issue on the rate of convergence has not been addressed formally. In this paper, we propose a simpler Markovian iterative method to compute P(k,t) for a class of growing network models. We also provide an upper bound estimation of the error of using P(k,t) to represent P(k) for sufficiently large t, and we show that with the iterative method, the rate of convergence of P(k,t) is root linear.
منابع مشابه
Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملA framework for cascade size calculations on random networks
We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degreedegree correlations and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the persp...
متن کاملRobust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملTail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks
Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2010